1	Suom and Cornine: ULV Spray Control of	9 Channsotha Suom
2	Vector Mosquitoes	10 Norfolk County Mosquito Control Project
3		11 61 Endicott Street
4	Journal of the American Mosquito Control	12 Norwood, MA 02062
5	Association	13 Phone: 781-762-3681
6		14 Fax: 781-769-6436
7		15 Email: <u>csuom.ncmcp@verizon.net</u>
8		
16		
17		
18	Ultra Low Volume (ULV) Adulticide	e Spraying in Response to Host-seeking and
19	Oviposition Activity of Mosquitoes (Dipt	era: Culicidae) Associated with West Nile Virus
20	and Eastern Equine Encephalitis	Transmission in Massachusetts, U.S.A.
21		
22	Channsotha Suom ¹	and Frank H. Cornine III ²
23		
24	1. Norfolk County Mosquito Control Pro	oject, 61 Endicott Street, Norwood, MA 02062
25	2. Central Massachusetts Mosquito Con	trol Project, 111 Otis Street, Northborough, MA
26	01532	
27		

Abstract

29	Mosquito host-seeking and oviposition activity was studied to determine: (1) an optimal
30	ultra low volume (ULV) insecticide spraying time, and (2) if more than one application would be
31	needed to target potential West Nile virus (WNv) and Eastern Equine Encephalitis (EEE) virus
32	mosquito vectors. A collection bottle rotator trap was used to collect host-seeking mosquitoes,
33	whereas a modified bottle rotator oviposition trap was used to collect gravid mosquitoes in five
34	3-h intervals: one period before sunset (-3 to 0 h), one at sunset (0-3 h), and three thereafter (3-6
35	h, 6-9 h, 9-12 h). All mosquito species host-seeking activity combined showed peak activity at
36	the 0-3 h interval relative to sunset. Culex spp. (Culex pipiens (Linnaeus) and Cx. restuans
37	(Theobald)) oviposition activity was significantly highest at the 0-3 h interval relative to sunset,
38	declined at 3-6 h, and then significantly increased to a steady level thereafter. The data suggest
39	that: (1) the 0-3 h interval relative to sunset as the optimal time for ULV insecticide spraying for
40	vector control and that (2) only one ULV application is necessary to effectively control host-
41	seeking and ovipositing mosquito populations.
42	
43	Key words
44	ULV, WNv, EEE, oviposition, host-seeking

Introduction

47	Eastern Equine Encephalitis (EEE) is a mosquito-borne disease caused by an alphavirus
48	of the Togaviridae family of viruses. It was first discovered in Massachusetts in 1938 with 34
49	cases reported, of which 25 resulted in fatalities (Fothergill et al. 1938, Getting et al. 1941). EEE
50	virus is maintained in an enzootic cycle between mosquito vectors and avian reservoirs, which
51	serve to amplify the virus. In the United States, an average of five to seven human EEE
52	neuroinvasive viral cases is reported annually. A total of 260 human cases has been reported
53	between 1964 and 2009, with a mortality rate of about one third (CDC 2011a). Survivors often
54	experience long term mental and physical sequelae (CDC 2011a, Przelomski et al. 1988).
55	Massachusetts is one of the most active EEE foci in the United States, second only to
56	Florida (~ 14% and ~ 25% of all cases reported, respectively; CDC 2011a). Historically,
57	Plymouth and Bristol Counties tend to be the foci of EEE virus activity within Massachusetts
58	(MDPH 2011ab, Moncayo and Edman 1999). The most recent outbreaks occurred in 2006 and
59	2010. In 2006, 157 of 9,344 mosquito pools tested positive for EEE and five human cases, with
60	two resulting in fatalities, were identified. In 2010, a similar outbreak occurred after 65 of 3,558
61	mosquito pools tested positive for EEE and two human cases were indentified. In both
62	scenarios, the Culiseta melanura (Coquillett) mosquito species had the highest incidence of EEE
63	positive pools, followed by Coquillettidia perturbans (Walker) (MDPH 2011ab).
64	Appearing in New York City in 1999, West Nile virus (WNv) is relatively new to the
65	United States when compared to EEE virus (CDC 2011b, Hayes 2005). As with EEE, WNv is
66	maintained in the enzootic cycle between mosquito vectors and avian reservoirs. Unlike EEE,
67	West Nile is a flavivirus of the <i>Flaviviridae</i> family. Since the appearance of WNv in the United

States, there has been an average of 2,555 reported cases (neuroinvasive, non-neuroinvasive, and
unspecified) and an average death toll of 101 annually (CDC 2011b; Table 1).

Comparing WNv incidences to the EEE outbreaks in Massachusetts in 2006, 43 of 9,344
mosquito pools tested positive with three human cases reported. In 2010, 121 of 3,558 mosquito
pools tested positive for WNv, resulting in seven human cases (MDPH 2011ab). In these cases, *Culex* spp. (*Cx. pipiens* (Linnaeus) and *Cx. restuans* (Theobald)) was the culprit vector, followed
by *Cs. melanura*, for the spread of West Nile virus.

75 Combining all WNv and EEE cases in Massachusetts, 2.1% of all tested mosquito pools 76 were positive for virus in 2006, and that figure more than doubled to 5.2% for 2010. Source 77 reduction, such as eliminating breeding habitat, is the most environmentally sensitive control 78 method as part of an Integrated Pest Management (IPM) program (Axtell 1979, Olson 1979, 79 Rose 2001), better referred to as Integrated Mosquito Management (IMM) by the American 80 Mosquito Control Association (2011). Inevitably there will be adult mosquitoes, and when they 81 pose a public health risk, immediate control measures are advised to reduce the spread of virus. 82 Contemporary ultra low volume (ULV) applications employ very low amounts of insecticide to 83 reduce potential disease-vectoring mosquito populations and can be applied either by specialized 84 trucks or airplanes.

To reduce potential environmental effects and to improve control efficacy, it is imperative that ULV programs operate when target vector mosquitoes are most active. Our research studies the host-seeking and oviposition activity of mosquitoes in Massachusetts and explores: (1) an optimal ULV insecticide spraying time, and (2) if more than one application would be needed to target potential West Nile virus and/or Eastern Equine Encephalitis virus mosquito vectors.

91

Materials and methods

93 Trap designs

94 Host-seeking trap. A John W. Hock Collection Bottle Rotator (Model 1512,
95 Gainesville, FL) was mounted onto a wooden post approximately 5 ft in length (~1.5 m) staked
96 into the ground (Fig. 1). A hose connected to a carbon dioxide tank was attached to a CDC
97 miniature light trap mounted on top of the bottle rotator unit.

98 Oviposition trap. A John W. Hock Collection Bottle Rotator (Model 1512, Gainesville, 99 FL) was mounted on a wooden base high enough to allow rotation of the collection bottles 100 without contacting the ground. Various 3 in diameter (~8 cm) PVC piping was fashioned and 101 connected from the intake of the bottle rotator unit to a plastic tub baited with infused hay 102 solution (Fig. 2). A fan unit (without light bulb) from a CDC miniature light trap was attached at 103 the tub-end of the PVC piping with a reducer to mitigate turbulence on the water surface. The 104 PVC piping was supported over the tub by means of a pipe hanger attached to a piece of wood 105 the width of the tub. All piping connections were secured with PVC primer and glue.

106

107 Host-seeking activity

Host-seeking traps were set in woody, shaded areas typical of mosquito habitat in sites
across Norfolk and Worcester Counties, Massachusetts from 5th June through 8th September,
2008 and 9th June through 15th September, 2009 for a total of 130 trap nights. Carbon dioxide
attractant from a tank was output at 250-500 cc. The rotator units were programmed for five 3-h
collection intervals: one period before sunset (-3 to 0 h), one at sunset (0-3 h), and three
thereafter (3-6 h, 6-9 h, 9-12 h). Trap intervals were reprogrammed approximately every two

weeks to adjust around sunset. After every trapping session, mosquitoes were collected and
stored frozen for later identification using morphological characteristics (Andreadis et al. 2005).

116

117 **Oviposition activity**

118 The modified bottle rotator oviposition traps were set in woody, shaded areas at two sites in Norfolk County and at three sites in Worcester County, Massachusetts from 28th June through 119 22nd September, 2010 for a total of 52 trap nights. The trap pans were filled with hay-infused 120 121 water as an attractant to about 2-3 in (~5-7 cm) from the fan intake. The rotator units were 122 programmed for five 3-h collection intervals: one period before sunset (-3 to 0 h), one at sunset 123 (0-3 h), and three thereafter (3-6 h, 6-9 h, 9-12 h). Trap intervals were reprogrammed 124 approximately every two weeks to adjust around sunset. After every trapping session, 125 mosquitoes were collected and stored frozen for later identification using morphological 126 characteristics.

127

128 Statistical analysis

Data were log_e transformed with zero counts replaced with 1's for geometric means comparisons (Microsoft Office Excel 2007, Microsoft Corporation, Redmond, WA). Geometric means for collection intervals were compared with the Kolmogorov-Smirnov two-tailed independent samples test (K-S test) using statistical analysis software (SPSS 16, IBM Corporation, Somers, NY). Trap nights with no collections of a particular species were not considered in the analysis for that species.

138

Host-seeking activity

Results

139	Seven species of mosquitoes were collected from 2009 through 2010 (Table 2), and,
140	except for Anopheles spp. (Anopheles punctipennis (Say) and An. quadrimaculatus (Say)) and
141	Psorophora ferox (von Humboldt), were analyzed with the aforementioned K-S tests. Culex spp.
142	(Culex pipiens (Linnaeus) and Cx. restuans (Theobald)) host-seeking activity was significantly
143	highest at sunset (0-3 h; $n = 79$, $P < 0.05$), but declined and remained steady as the evening
144	progressed (Fig. 3A). Culiseta melanura (Coquillett) and Coquillettidia perturbans (Walker)
145	host-seeking activity was also significantly highest at the sunset interval (0-3 h; $n = 119$ and $n =$
146	130, $P < 0.05$, respectively), whereas activity within the other intervals was equal to one another
147	(Figs. 3B and 3C). Aedes vexans (Meigen) and Ochlerotatus canadensis (Theobald) host-
148	seeking activity did not differ significantly through the trapping intervals (Fig. 3D, $n = 94$ and
149	Fig. 3E, $n = 71$, $P > 0.05$, respectively). All mosquito species host-seeking activity combined
150	showed peak activity at the 0-3 h interval relative to sunset (Fig. 3F, $n = 563$, $P < 0.05$).
151	
152	Oviposition activity
153	A total of 2,531 gravid <i>Culex</i> spp. mosquitoes was collected from the modified bottle
154	rotator oviposition trap. Culex spp. oviposition activity was significantly highest at the sunset

156 the remainder of the evening (Fig. 4).

157

155

158

interval (0-3 h, n = 52, P < 0.05), declined at 3-6 h, then increased significantly once more for

Discussion

160 We chose to analyze host-seeking and oviposition activity of specific mosquito species based on previous studies implicating their roles as either enzootic and/or bridge vectors in the 161 162 West Nile virus or Eastern Equine Encephalitis cycles. For our purposes, we consider *Culex* spp. 163 as a complex of Cx. pipiens and Cx. restuans mosquitoes, which is how they are identified and 164 labeled by the Massachusetts Department of Public Health and Massachusetts mosquito control 165 organizations. *Culex* spp. has been heavily scrutinized as one of the most important enzootic 166 vectors of WNv (Savage et al. 2006, 2008, Apperson et al. 2002, 2004), although recent analysis 167 by Kilpatrick et al. implicates the *Culex* spp. complex as bridge vectors and that they may be 168 responsible for up to 80% of human WNv infections (2005). We observed Culex spp. host-169 seeking activity to be most significant at the sunset interval (0-3 h), with the intervals after still 170 quite active (Fig. 3A). While this behavior has also been noted in previous studies (Anderson et 171 al. 2007, Crisp and Knepper 2002, Mitchell 1982, Reddy et al. 2007, Savage et al. 2008, Suom et 172 al. 2010), Gladney and Turner (1970) have observed only an even distribution of activity of Cx. 173 restuans mosquitoes throughout the night.

Culiseta melanura has long been considered an enzootic vector of EEE (Hayes 1962,
Molaei et al. 2006). In a more recent finding, weekly EEE virus minimal infection rates (MIR,
defined as the number of virus positive pools per 1,000 mosquitoes tested (Moore et al. 1993))
per trap night strongly associate *Cs. melanura* with human infection in spite of their population
decline since 1979 (Hachiya et al. 2007). Even though *Cs. melanura* is mostly ornithophilic,
Molaei et al. (2006) observed that more than 10% of their blood-meals were mammalianderived, implicating it as a bridge vector of WNv to mammals. Our observation of *Cs. melanura*

host-seeking activity peaking at sunset (Fig. 3B) agrees with previous studies (Crans et al. 1982,
Hayes 1962, Nasci and Edman 1981).

183	Analyses by Moncayo and Edman suggest Coquillettidia perturbans as an epidemic
184	vector of EEE virus in southeastern Massachusetts through rankings based on populations of
185	mosquitoes caught in CO ₂ -baited light traps (1999). The role of Cq . perturbans as a bridge
186	vector of EEE and WNv has also been suggested by Apperson et al. (2002) as well as by Molaei
187	et al. (2008) because of their preference for mammalian blood and opportunistic feeding of avian
188	blood. We observed Cq. perturbans host-seeking activity peak 0-3 h after sunset (Fig. 3C),
189	which corroborates findings of previous studies (Anderson et al. 2007, Crisp and Knepper 2002,
190	Gladney and Turner 1970, Hayes 1962, Taylor et al. 1979).
191	Aedes vexans should also be considered an important bridge vector because of its high
192	population densities, repeated detection of WNv in the species, and its preference for mammalian
193	blood (Turell et al. 2005). We observed Ae. vexans host-seeking activity as relatively even
194	throughout the night (Fig. 3D). Others have noted a peak shortly after sunset (Anderson et al.
195	2007, Mitchell 1982, Wright and Knight 1966), whereas Gladney et al. (1970), Nelson and
196	Spadoni (1972), Crisp and Knepper (2002), and Aldemir et al. (2010) note peaks at dusk and in
197	the early morning periods. The differences observed in Ae. vexans behavior may be a matter of
198	geography, reflecting the local variance of the species. Alternatively, our data may not be
199	representative since we observed lower than average Ae. vexans populations for the last two
200	years in Massachusetts.
201	The role of Ochlerotatus canadensis as a bridge vector of EEE virus has been suggested

The role of *Ochlerotatus canadensis* as a bridge vector of EEE virus has been suggested by Moncayo and Edman (1999) and Molaei et al. (2008); but in the case of WNv, observations under laboratory conditions have described them as inefficient vectors (Turell et al. 2005). Our

data suggest no significant differences in host-seeking activity intervals during the trapping
period (Fig. 3E). Mitchell (1982) and Crisp and Knepper (2002) report of higher activity before
sunset whereas Hayes (1962) reports diurnal activity with crepuscular peaks.
Grouping all mosquito species host-seeking activity together for analysis indicates the 03 h period around sunset as significantly more active than all other intervals (Fig. 3F). Our data

and analysis of general mosquito host-seeking activity agrees with previous studies (Carroll and

210 Bourg 1977, Savage et al. 2008, Suom et al. 2010) of mosquito questing behavior.

209

211 Oviposition activity of mosquitoes has not been fully considered in the implementation of 212 ULV insecticide spraying programs since most abundance data are collected from CDC 213 miniature light traps. We sought to improve the efficacy of such programs by studying the 214 temporal oviposition activity of gravid *Culex* spp. mosquitoes. Although Reddy et al. did not 215 observe bi-modal peaks in *Culex* spp. oviposition activity (2007), our findings indicate peaks at 216 both sunset and towards sunrise (Fig. 4), corroborating a recent study by Savage et al. (2006) and 217 an earlier one by MacDonald et al. (1981). When comparing Culex spp. host-seeking to 218 oviposition activity (Fig. 5), peak activities coincide at the sunset interval (0-3 h). Another note 219 is that average *Culex* spp. oviposition activity is significantly higher than average host-seeking 220 activity at sunset (0-3 h interval) and in the early morning hours (6-9 h, 9-12 h intervals), 221 reinforcing the importance of gravid trap usage for vector surveillance. When *Culex* spp. 222 oviposition activity is compared to all mosquito species host-seeking activity combined, the peak 223 activity interval also coincides (Fig. 6) at the sunset interval (0-3 h), with *Culex* spp. oviposition 224 activity significantly higher from sunset until morning. Having observed peak mosquito host-225 seeking and oviposition activity as simultaneous events (Fig. 6), there is no need for more than 226 one ULV application to treat an area.

227 Research studies have generally agreed that mosquito spraying efforts initiated after 228 sunset would coincide with the highest flight activity of the evening (Anderson et al. 2007, 229 Carroll and Bourg 1977, Mitchell 1982, Reddy et al. 2007, Savage et al. 2006, Suom et al. 2010). 230 Anderson et al. (2007) and Carroll and Bourg (1977) suggest mosquito ULV spraying efforts be 231 conducted from sunset to sunrise for the greatest application efficacy, although Crisp et al. 232 (2002) would include at least 1-2 h before sunset in regards to spring mosquito species. For 233 public health operations and logistical purposes, our research hopes to narrow the application 234 time interval for greatest efficacy for control of disease-vectoring mosquitoes. Kilpatrick et al. 235 (2005) recommend focusing on control of Cx. pipiens and Cx. restuans since they may be 236 responsible for up to 80% of human WNv infections in the northeastern United States. 237 Therefore, targeting older, blood-fed and ovipositing female mosquitoes would be beneficial 238 since they are more likely to be infected, thus a 2-h evening and a 2-h morning application is 239 recommended by Savage et al. (2006). On the other hand, our data suggest that the optimal time 240 to apply ULV insecticide to target WNv and EEE vectors would be 0-3 h after sunset. This 241 would eliminate the need for multiple applications and excess chemical usage since peak 242 mosquito host-seeking and oviposition activities occur simultaneously (Figs. 3F, 4, and 6). Even 243 still, mosquito adulticide applications conducted thereafter are warranted since: (1) *Culex* spp. 244 oviposition activity is rather significant towards the early morning hours (Fig. 4), and (2) 245 implicated bridge vector species activity is equal throughout the evening (Figs. 3D and 3E). 246 Mosquito management practices will vary by region and are dictated by local ordinances, needs, 247 and differences in behavior of mosquito sub-species in geographically different areas. The 248 research and data presented here were accomplished for the matter of vector control logistics and 249 should be used merely as a reference.

250

251	Acknowledgements
252	We would like to thank John J. Smith, Tim Deschamps, the staff, and the Commissions
253	of the Norfolk County (NCMCP) and Central Massachusetts (CMMCP) Mosquito Control
254	Projects for their support in this research.
255	

256	References Cited
257	Aldemir, A., H. Bedir, B. Demirci, and B. Alten. 2010. Biting activity of mosquito
258	species (Diptera: Culicidae) in the Turkey-Armenia border area, Ararat Valley, Turkey. J. Med.
259	Entomol. 47(1): 22-27.
260	[AMCA] American Mosquito Control Association. 2011. Control. [accessed February
261	21, 2011]. http://www.mosquito.org/mosquito-information/control.aspx
262	Anderson, J.F., A.J. Main, F.J. Ferrandino, and T.G. Andreadis. 2007. Nocturnal
263	activity of mosquitoes (Diptera: Culicidae) in a West Nile virus focus in Connecticut. J. Med.
264	Entomol. 44(6): 1102-1108.
265	Andreadis, T.G., M.C. Thomas, and J.J. Shephard. 2005. Identification Guide to the
266	Mosquitoes of Connecticut. New Haven: The Connecticut Agricultural Experiment Station.
267	Apperson, C.S., B.A. Harrison, T.R. Unnasch, H.K. Hassan, W.S. Irby, H.M. Savage,
268	S.E. Aspen, D.W. Watson, L.M. Rueda, B.R. Engber, and R. S. Nasci. 2002. Host-feeding
269	habits of <i>Culex</i> and other mosquitoes (Diptera: Culicidae) in the borough of Queens in New
270	York City, with characters and techniques for identification of <i>Culex</i> mosquitoes. J. Med.
271	Entomol. 39(5): 777-785.
272	Apperson, C.S., H.K. Hassan, B.A. Harrison, H.M. Savage, S.E. Aspen, A. Farajollahi,
273	W. Crans, T. Daniels, R.C. Falco, M. Benedict, M. Anderson, L. McMillen, and T.R. Unnasch.
274	2004. Host feeding patterns of established and potential mosquito vectors of West Nile virus in
275	the eastern United States. Vector-borne and Zoonotic Dis. 4(1): 71-82.
276	Axtell, R.C. 1979. Principles of integrated pest management (IPM) in relation to
277	mosquito control. Mosq. News 39(4): 709-718.

278	Carroll, M.K. and J.A. Bourg. 1977. The night-time flight activity and relative
279	abundance of fifteen species of Louisiana mosquitoes. Mosq. News 37(4): 661-664.
280	[CDC] Centers for Disease Control and Prevention. 2011a. Eastern Equine Encephalitis.
281	[accessed February 21, 2011]. http://www.cdc.gov/EasternEquineEncephalitis/index.html.
282	[CDC] Centers for Disease Control and Prevention. 2011b. West Nile virus. [accessed
283	February 21, 2011]. http://www.cdc.gov/ncidod/dvbid/westnile/index.htm.
284	Crans, W.J., M.E. Slaff, and J. Gamble. 1982. The activity cycle of Culiseta melanura in
285	coastal areas of southern New Jersey. Proc. N.J. Mosq. Ctrl. Assoc.: 30-31.
286	Crisp, S. and R. Knepper. 2002. An examination of mosquito activity related to time of
287	day for several Michigan species. Wing Beats 13(4): 10, 18, 30.
288	Fothergill, L.D., J.H. Dingle, S. Farber, and M.L. Connerley. 1938. Human encephalitis
289	caused by the virus of the eastern variety of equine encephalomyelitis. N. Engl. J. Med. 219:
290	411.
291	Getting, V.A. 1941. Equine encephalomyelitis in Massachusetts. An analysis of the
292	1938 outbreak, a follow-up of cases and a report of a mosquito survey. N. Engl. J. Med. 224:
293	999-1006.
294	Gladney, W.J. and E.C. Turner, Jr. 1970. Mosquito flight activity studies utilizing timer-
295	equipped light traps and Malaise traps. Mosq. News 30(1): 75-80.
296	Hachiya, M., M. Osborne, C. Stinson, and B.G. Werner. 2007. Human Eastern Equine
297	Encephalitis in Massachusetts: predictive indicators from mosquitoes collected at 10 long-term
298	trap sites, 1979-2004. Am. J. Trop. Med. Hyg. 76(2): 285-292.
299	Hayes, R.O. 1962. The diel activity cycles of Culiseta melanura (Coquillett) and allied
300	mosquitoes. Mosq. News 22(4): 352-356.

301	Hayes, E.B., N. Komar, R.S. Nasci, S.P. Montgomery, D.R. O'Leary, and G. L.
302	Campbell. 2005. Epidemiology and transmission dynamics of West Nile virus disease. Emerg.
303	Infect. Dis. 11(8): 1167-1173.
304	Kilpatrick, A.M., L.D. Kramer, S.R. Campbell, E.O. Alleyne, A.P. Dobson, and P.
305	Daszak. 2005. West Nile virus risk assessment and the bridge vector paradigm. Emerg. Infect.
306	Dis. 11(3): 425-429.
307	MacDonald, R.S., D.J. Madder, and G.A. Surgeoner. 1981. Diel periodicity of
308	oviposition by Culex pipiens and Culex restuans in southern Ontario. Proc. Entomol. Soc.
309	Ontario 112: 39-40.
310	[MDPH] Massachusetts Department of Public Health. 2011a. Arbovirus surveillance
311	summary, 2006. [accessed February 21, 2011]. http://www.mass.gov/Eeohhs2/docs/dph/
312	cdc/arbovirus/wnvsurveillancesummary2006.pdf.
313	[MDPH] Massachusetts Department of Public Health. 2011b. Arbovirus surveillance
314	summary, 2010. [accessed February 21, 2011]. http://www.mass.gov/Eeohhs2/docs/dph/cdc/
315	arbovirus/2010_summary.pdf.
316	Mitchell, L. 1982. Time-segregated mosquito collections with a CDC miniature light
317	trap. Mosq. News 42(1): 12-18.
318	Molaei, G. and T.G. Andreadis. 2006. Identification of avian- and mammalian-derived
319	bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and its implication for
320	West Nile virus transmission Connecticut, U.S.A. J. Med. Entomol. 43(5): 1088-1093.
321	Molaei, G., T.G. Andreadis, P.M. Armstrong, and M. Diuk-Wasser. 2008. Host-feeding
322	patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals

323	from 23 s	pecies	of Aedes,	Anopheles	, Culex,	Coquillettidic	i, Psorc	phora, a	and Uran	otaenia.	J
-----	-----------	--------	-----------	-----------	----------	----------------	----------	----------	----------	----------	---

324 Med. Entomol. 45(6): 1143-1151.

325	Moncayo, A.C. and J.D. Edman. 1999. Toward the incrimination of epidemic vectors of
326	Eastern Equine Encephalomyelitis virus in Massachusetts: abundance of mosquito populations at
327	epidemic foci. J. Amer. Mosq. Ctrl. Assoc. 15(4): 479-492.
328	Moore, C.G., R.G. McLean, C.J. Mitchell, R.S. Nasci, T.F. Tsai, C.H. Calisher, A.A.
329	Marfin, P.S. Moore, and D.J. Gubler. 1993. Guidelines for Arbovirus Surveillance Programs in
330	the United States. Atlanta: Centers for Disease Control and Prevention.
331	Nasci, R.S. and J.D. Edman. 1981. Vertical and temporal flight activity of the mosquito
332	Culiseta melanura (Diptera: Culicidae) in southeastern Massachusetts. J. Med. Entomol. 18(6):
333	501-504.
334	Nelson, R.L. and R.D. Spadoni. 1972. Nightly patterns of biting activity and parous
335	rates of some California mosquito species. Proc. Pap. 40 th Annu. Conf. Calif. Mosq. Ctrl.
336	Assoc.: 72-76.
337	Olson, J.K. 1979. Application of the concept of integrated pest management (IPM) to
338	mosquito control programs. Mosq. News 39(4): 718-723.
339	Przelomski, M.M., E. O'Rourke, G.F. Grady, V.P. Bernardi, and H.G. Markley. 1988.
340	Eastern Equine Encephalitis in Massachusetts: a report of 16 cases, 1970-1984. Neurology 38:
341	736-739.
342	Reddy, M.R., T.J. Lepore, R.J. Pollack, A.E. Kiszewski, A. Spielman, and P. Reiter.
343	2007. Early evening questing and oviposition activity by the Culex (Diptera: Culicidae) vectors
344	of West Nile virus in northeastern North America. J. Med. Entomol. 44(2): 211-214.

345	Rose, R.I. 2001. Pesticides in public health: integrated methods of mosquito
346	management. Emerg. Infect. Dis. 7(1): 17-23.
347	Savage, H.M., M. Anderson, E. Gordon, L. McMillen, L. Colton, D. Charnetzky, M.
348	Delorey, S. Aspen, K. Burkhalter, B.J. Biggerstaff, and M. Godsey. 2006. Oviposition activity
349	patterns and West Nile virus infection rates for members of the Culex pipiens complex at
350	different habitat types within the hybrid zone, Shelby County, TN, 2002 (Diptera: Culicidae). J.
351	Med. Entomol. 43(6): 1227-1238.
352	Savage, H.M., M. Anderson, E. Gordon, L. McMillen, L. Colton, M. Delorey, G.
353	Sutherland, S. Aspen, D. Charnetzky, K. Burkhalter, and M. Godsey. 2008. Host-seeking
354	heights, host-seeking activity patterns, and West Nile virus infection rates for members of the
355	Culex pipiens complex at different habitat types within the hybrid zone, Shelby, TN, 2002
356	(Diperta: Culicidae). J. Med. Entomol. 45(2): 276-288.
357	Suom, C., H.S. Ginsberg, A. Bernick, C. Klein, P.A. Buckley, C. Salvatore, and R.A.
358	LeBrun. 2010. Host-seeking activity and avian host preferences of mosquitoes associated with
359	West Nile virus transmission in the northeastern U.S.A. J. Vect. Ecol. 35(1): 69-74.
360	Taylor, D.M., G.F. Bennett, and D.J. Lewis. 1979. Observations on the host-seeking
361	activity of some Culicidae in the Tantamar marshes, New Brunswick. J. Med. Entomol. 15(2):
362	134-137.
363	Turell, M.J., D.J. Dohm, M.R. Sardelis, M.L. O'Guinn, T.G. Andreadis, and J.A. Blow.
364	2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit
365	West Nile virus. J. Med. Entomol. 42(1): 57-62.
366	Wright, R.E. and K.L. Knight. 1966. Effect of environmental factors in biting activity of
367	Aedes vexans (Meigen) and Aedes trivittatus (Coquillett). Mosq. News 26(4): 565-578.

Tables

Table 1. West Nile virus cases reported to the Centers for Disease Control and Prevention,1999-2010.

	Neuroinvasive	Non-neuroinvasive	Unspecified		
Year	Disease Cases	Deisease Cases	Disease Cases	Total	Fatalities
1999	59	3	0	62	7
2000	19	2	0	21	2
2001	64	2	0	66	10
2002	2,946	1,160	50	4,156	284
2003	2,866	6,830	166	9,862	264
2004	1,142	1,269	128	2,539	100
2005	1,294	1,607	99	3,000	119
2006	1,459	2,616	194	4,269	177
2007	1,217	2,350	63	3,630	124
2008	687	624	45	1,356	44
2009	373	322	25	720	32
2010	601	380	0	981	45
Total	12,727	17,165	770	30,662	1,208
Average	1,061	1,430	64	2,555	101

Table 2. Host-seeking mosquitoes collected by species and year. Anopheles spp. consist ofAnopheles punctipennis and An. quadrimaculatus.

	Year		
Species	2008	2009	2008-09 combined
Culex spp.	1,057	363	1,420
Culiseta melanura	292	700	992
Coquillettidia perturbans	14,837	23,689	38,526
Aedes vexans	239	632	871
Ochlerotatus canadensis	-	740	740
Anopheles spp.	506	930	1,436
Psorophora ferox	-	582	582
Total	16,931	27,636	44,567

Figures

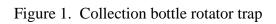


Figure 2. Modified bottle rotator oviposition trap

Figure 3. Mosquito host-seeking activity relative to sunset. Geometric means for each interval with the same lowercase letter are not significantly different (P < 0.05; K-S test).

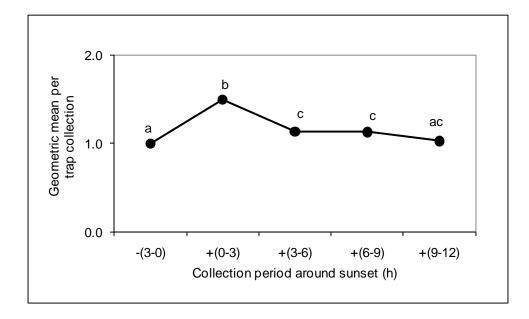
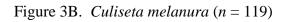
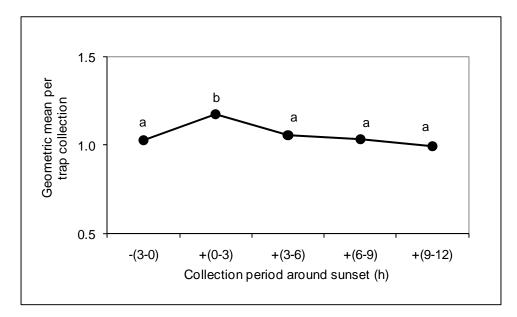




Figure 3A. *Culex* spp. (n = 79)

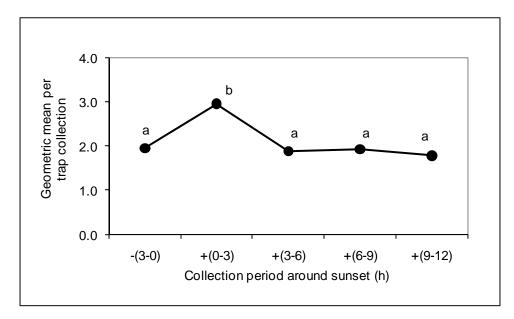


Figure 3C. *Coquillettidia perturbans* (*n* = 130)

Figure 3D. Aedes vexans (n = 94)

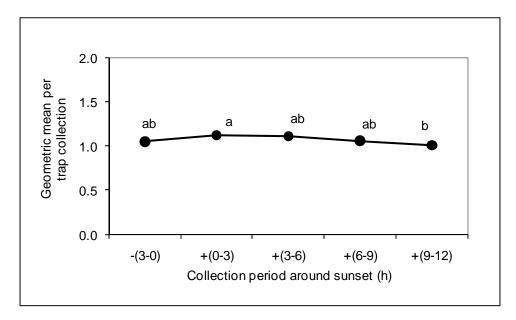
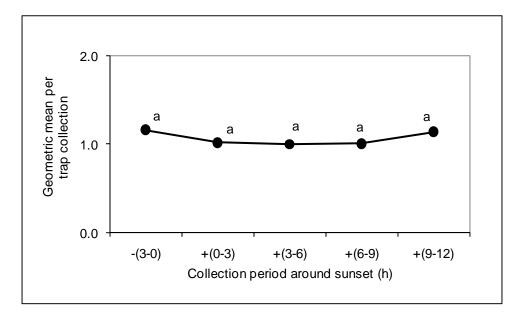



Figure 3E. Ochlerotatus canadensis (n = 71)

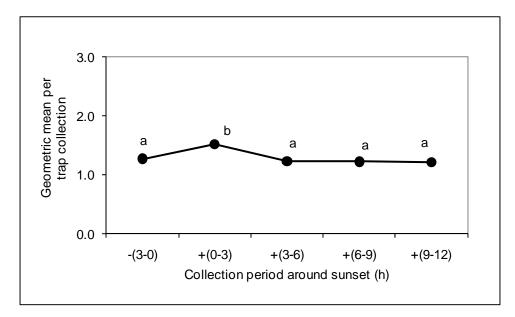


Figure 3F. All mosquito species combined (n = 563)

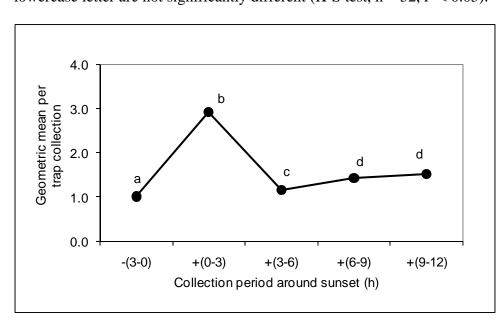


Figure 4. *Culex* spp. oviposition activity. Geometric means for each interval with the same lowercase letter are not significantly different (K-S test, n = 52, P < 0.05).

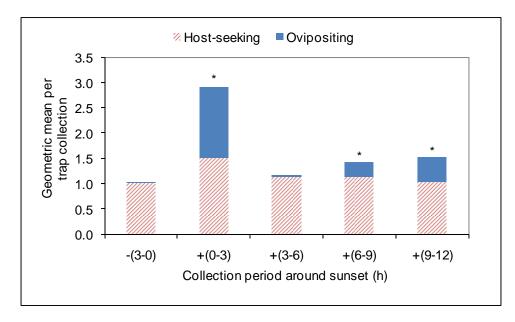
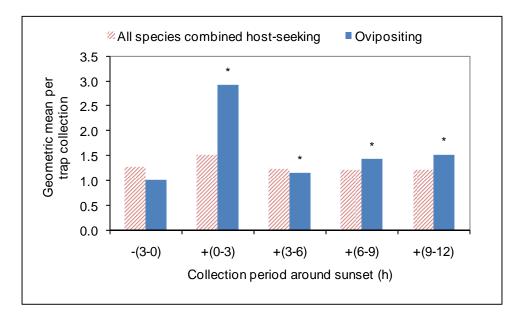



Figure 5. *Culex* spp. host-seeking activity (n = 79) compared to oviposition activity (n = 52). Time intervals with an asterisk (*) indicate a significant difference (K-S test, P < 0.05).

Figure 6. All species combined host-seeking activity (n = 573) compared to *Culex* spp. oviposition activity (n = 52). Time intervals with an asterisk (*) indicate a significant difference (K-S test, P < 0.05).

