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Increased mosquito abundance 
and species richness in Connecticut, 
United States 2001–2019
Tanya A. Petruff1,2, Joseph R. McMillan  1,2*, John J. Shepard1, Theodore G. Andreadis1 & 
Philip M. Armstrong1

Historical declines in multiple insect taxa have been documented across the globe in relation to 
landscape-level changes in land use and climate. However, declines have either not been universally 
observed in all regions or examined for all species. Because mosquitoes are insects of public health 
importance, we analyzed a longitudinal mosquito surveillance data set from Connecticut (CT), United 
States (U.S.) from 2001 to 2019 to identify changes in mosquito community composition over time. 
We first analyzed annual site-level collections and metrics of mosquito community composition with 
generalized linear/additive mixed effects models; we also examined annual species-level collections 
using the same tools. We then examined correlations between statewide collections and weather 
variables as well as site-level collections and land cover classifications. We found evidence that the 
average trap night collection of mosquitoes has increased by ~ 60% and statewide species richness 
has increased by ~ 10% since 2001. Total species richness was highest in the southern portion of CT, 
likely due to the northward range expansion of multiple species within the Aedes, Anopheles, Culex, 
and Psorophora genera. How the expansion of mosquito populations in the northeast U.S. will alter 
mosquito-borne pathogen transmission in the region will require further investigation.

Recent publications analyzing longitudinal data of insect populations have indicated an overall decline in insect 
diversity (predominately species richness) and abundance in North America and Europe in the last half century1,2. 
These declines are driven by a variety of factors including changes in landscape such as increased urbanization 
and deforestation1 and weather patterns, i.e., global climate change. In addition, parasitic diseases and the wide-
spread use of systemic insecticides, such as neonicotinoids, have been implicated in the decline of pollinating 
insects, such as bees3. These studies have raised public alarm given that insects are critical members of biological 
communities and ecosystem processes. However, declines across all insect communities have not been universally 
observed. Moth biomass in the United Kingdom has increased since the 1960s4, freshwater aquatic insect diversity 
has increased in countries that enacted water pollution regulations2, and historical increases in mosquito species 
richness and abundance across the U.S. is linked to insecticide usage restrictions such as banning the use of DDT5. 
Overall, anthropogenic-driven environmental changes are having broad-scale impacts on insect communities, 
which will have important environmental, economic, and public health implications in the present and future.

Mosquitoes are an important group of insects to monitor in the context of landscape and climate change 
due to their ability to vector human and animal pathogens as well as their impact on human enjoyment of the 
environment. Additionally, because mosquitoes are important to public health, mosquito surveillance data sets 
offer many advantages for understanding changes in insect populations: most mosquito surveillance techniques 
are standardized6, dichotomous keys and identification guides exist for many regions of the world7, and their 
bipartite lifecycle (larvae develop in aquatic habitats and adults are terrestrial) make them sensitive indicators to 
fine-scale changes in habitat and climate8. However, there are two major limitations to investigating longitudinal 
dynamics of mosquito populations and their subsequent communities. The first, and most important, limitation 
to understanding long-term dynamics of mosquito populations is a lack of long-term data. Some municipal and 
regional level mosquito control districts in the U.S. have data sets dating back decades and maintain long term 
surveillance sites; however, these data are the exception and the majority of mosquito field studies are short (e.g., 
1–3 years) in duration. The second limitation to understanding longitudinal trends in mosquito population is the 
central focus on either single species or community dynamics in the context of disease transmission9. A single 
species (or pathogen) surveillance approach has increased the prevalence of long-term data on West Nile virus 
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(WNV) transmission in the U.S., especially in regards to the Culex pipiens (Linnaeus) species complex10 and the 
invasion dynamics of Aedes albopictus (Skuse)11, yet these data sets do little to improve the understanding of 
mosquito species community dynamics in general. This lack of general mosquito community ecology knowledge 
is a critical gap in our ability to control mosquito populations and forecast disease (re)emergence12.

There is some research that explores how mosquito communities are changing due to landscape-level dynam-
ics. Previous studies on mosquito community structure have shown reductions in mosquito species richness and 
increases in the dominance of vectors of public health importance along forested to urban gradients13, simplifica-
tion of mosquito community structure in homogenized landscapes14, changes in human risk of mosquito-borne 
pathogens linked to habitat disturbances15,16, and in some instances, increased mosquito species richness was 
associated with increased pathogen prevalence17,18. Globalization has also led to the introduction and establish-
ment of mosquito species (and mosquito-borne pathogens) outside their evolutionary origins19,20. Historically, 
interventions such as mosquito control efforts to suppress malaria and yellow fever had a large and negative 
impact on mosquito abundance and community richness5; however, such broad-scale campaigns are no longer 
operable in many regions of the world and numerous mosquito populations have likely rebounded throughout 
much of their ranges.

In response to global climate change (more specifically global warming), many mosquito species and their 
associated pathogens are predicted to expand their geographical distributions with warming temperatures20,21. 
In the U.S., species such as Culex coronator (Dyar and Knab) and Culex erraticus (Dyar and Knab) in Central 
America and the southern U.S. have been documented in northern latitudes outside of these species’ historical 
distributions22,23. Other studies have shown changes in mosquito species distributions linked with temperature 
changes along altitudinal gradients24,25 (though these changes in altitudinal gradients could also be driven by 
changes in land use) and projected range expansions under various climate change scenarios21. Overall, identify-
ing species expansions strictly due to warming temperatures is difficult to assess as changes in climate are often 
coupled with factors such as land use changes and human behavior that feedback into climate change.

In respect to mosquito species communities in the northeast region of the U.S., Andreadis et al. (2005) 
published an identification guide to mosquitoes in Connecticut (CT) which at the time documented forty-
nine mosquito species in the state26. Prior to publication of the guide, the 0 °C winter isotherm was proposed 
as a limiting gradient to the expansion of Aedes albopictus and other more southern species incapable of adult 
diapause or producing eggs resistant to winter conditions27. However, Ae. albopictus is currently established in 
the northeast28, and mosquito species richness has increased annually throughout CT from 2001 to 201829. To 
better understand changes in mosquito species populations in the northeast U.S., our study objectives were to 
identify spatial and temporal trends in metrics of mosquito community composition that would indicate growth 
or decline of mosquito populations among sites and species. Our site-level regression analyses focused on total 
collections, species richness, species evenness, and the proportion of single-species detections; we also examined 
correlations between these metrics and land cover and seasonal weather variables. Our species-level regression 
analyses focused on total collections and the prevalence of single-site detections; we also provide an inventory of 
newly documented, recently established, and possibly declining mosquito species in the Northeast, and discuss 
species of emerging public health importance in the region.

Results
Summary statistics.  To date, The Connecticut Agricultural Experiment Station (CAES) has collected and 
tested 4,602,240 female mosquitoes comprised of 47 species in 8 genera. Approximately 98% of these collections 
were obtained from 92 trapping sites in 73 towns throughout the state, while the remainder of collections were 
from an additional 365 supplemental sites sampled between 1996 and 2007. Eighty-eight percent of collections 
come from CDC Light Traps, CDC Gravid Traps and Biogents BG Sentinel Traps (beginning in 2012). There 
have been several other collection methods used throughout the years that account for 11.6% of the mosquitoes 
collected (S. Table 1). Overall, there was considerable variation in mosquito abundance, surveillance effort, spe-
cies richness/evenness, and the proportion of single species detections across CT (Fig. 1). One clear trend was 
that surveillance effort was greatest in CT’s human population centers (predominately CT’s southwestern and 
central counties) where WNV is commonly detected and along the CT-Rhode Island border where EEEV is 
most commonly detected (Fig. 1A). Another noticeable visual trend was that species evenness tends to be higher 
in the eastern portion of CT (Fig. 1B).

Objective 1: annual collections of mosquito populations among sites.  Our first objective was to 
identify spatial and temporal linear and nonlinear trends in mosquito abundance among sites. We also exam-
ined coarse-scale correlations between statewide (i.e., annual) and site-wide abundance and weather and land 
classification variables. All regression results and tables are provided as supporting information in Supporting 
Information: Regression Tables.

Mosquito abundance.  Temporal regressions.  After accounting for trapping effort, regression parameters 
estimating the relationship between site-level mosquito abundance and year of collection were positive using 
generalized linear mixed effects models (GLMMs) (“Year”—Estimate 0.03, t-value 9.11) and generalized addi-
tive mixed effects models (GAMMs) (“Year”—Est. 0.77, t-value 2.7, p = 0.007), suggesting that site-level mos-
quito abundance has increased in CT since 2001 (Fig. 2A,B): this trend resulted in a predicted 60% increase in 
annual abundance from 2001 to 2019. While these regressions identified possible increasing trends in site-level 
abundance, they provided an overall poor-fit to the data: AIC scores from fixed effect GLMMs were higher 
than random effects-only models (ΔAIC 415.1). This poor model fit may be in part driven by directly modeling 
Year as a fixed continuous effect; Year as a random categorical effect may better capture variation in mosquito 
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Figure 1.   Maps of total mosquito abundance (log10 transformed) (A), total number of trap nights (A), average 
annual mosquito species richness (B), average annual mosquito species evenness (B), and average annual 
prevalence of single species detections (C) across 87 mosquito surveillance sites throughout Connecticut, U.S. 
sampled with ground level CDC CO2-baited light traps from 2001 to 2019. (A) Point sizes represent abundance 
while colors represent trap-nights; (B) point sizes represent species richness while colors represent species 
evenness; (C) point sizes represent prevalence of single species detections. (A–C) Solid black lines represent 
county political boundaries. The figure was created in R V 3.6.3 using the following packages: ggplot2 and maps.
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collections30. Despite large differences in AIC scores between fixed and random effects-only models, we detected 
a pattern of increasing intercept values when examining “Year” as a random effect (S. Fig. 1), providing further 
evidence of an increasing temporal trend in site-level mosquito abundance.

Spatial regressions.  After accounting for trapping effort, regression parameters estimating the relationship 
between site-level mosquito abundance and latitude/longitude were positive using a GLMM (“Latitude (cen-
tered)”—Est. 0.49, t-value 5.48; Longitude (centered)”—Est. 0.20, t-value 4.78), indicating that mosquito abun-
dance tends to increase on a south to north and west to east gradient (which reflects the overall transition in land 
cover from developed to forested in CT). The best fitting fixed effect GAMM included Longitude by Latitude 
smoothing terms, which also predicted positive relationships between abundance and site coordinates (Smooth-
ing term 1: Est. 0.24, p = 0.06; Smoothing term 2: Est. 0.05, p = 0.67). GAMM predictions of site-level mosquito 
abundance were considerably more complex than GLMM predictions, yet still supported the overall trend of 
increasing abundance from south to north and west to east (S. Fig. 2). Overall, the fixed effect GLMMs provided 
an extremely poor fit to the data compared to random effects-only GLMMs (Latitude—ΔAIC 1092.7; Longi-
tude—ΔAIC 1099.8). These poor model fits may be in part driven by directly modeling coordinate (i.e., site) as 
a fixed continuous effect: GAMM predictions that account for nonlinear relationships between abundance and 
spatial location may provide a more appropriate fit to the data while site as a categorical random effect in the 
GLMMs may better capture variation in mosquito collections30.

Weather correlations.  When comparing statewide annual mosquito abundance to weather variables, we found 
no correlations between summer temperatures, spring temperatures or precipitation. This was despite detecting 

Figure 2.   Average annual mosquito abundance (A), number of trap nights (B), mosquito species richness (C), 
mosquito species evenness (D), the annual correlation between mosquito species richness and evenness (E), 
and the prevalence of single mosquito species detections (F) across 87 mosquito surveillance sites throughout 
Connecticut, U.S. sampled with ground level CDC CO2-baited light traps from 2001 – 2019. For (A)–(D) and 
(F), points represent the average across all sites, solid lines represent the standard error of the average, and 
dashed lines are added to aid interpreting each plot as a time series. For (E), points represent the average across 
all sites while solid lines represent the 95% CI of the correlation point estimate. The figure was created in R V 
3.6.3 using base functions.
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a slight annual increase in temperatures across all three seasons examined (average daily temperature GLMM 
Est., Season/Summer: 0.05 °C, Prior Spring: 0.02 °C, Prior Winter: 0.07 °C) and a slight annual decline in within 
season and prior spring precipitation (total precipitation GLMM Est., Season/Summer: − 4.23 mm, Prior Spring: 
− 3.38 mm; Prior Winter: 2.22 mm) in CT since 2001. However, we did find a positive correlation between total 
summer precipitation and annual statewide mosquito abundance (r = 0.50, CI 0.07–0.78).

Land cover correlations.  When comparing total site-wide abundance to land cover classifications, we found 
positive correlations between percent land cover categorized as barren (r = 0.22, CI 0.01–0.41), forested wetland 
(r = 0.34, 0.14–0.52), and non-forested wetland (r = 0.21, 0.004–0.41). We also found a negative association in 
total site-level abundance and percent land cover categorized as grass (r = − 0.35, − 0.52 to − 0.15).

Species richness.  Temporal regressions.  After accounting for trapping effort, regression parameters estimat-
ing the relationship between site-level species richness and year of collection were positive using both GLMMs 
(“Year (centered)”—Est. 0.10, t-value 9.46) and GAMMs (“Year”—Est. 1.78, t-value 1.93, p = 0.05) (Fig. 2C): this 
trend resulted in a predicted 10% increase in site-level species richness from 2001 to 2019. Overall, fixed effects 
GLMMs of species richness provided an overall poor fit to the data when compared to a random effects-only 
model (ΔAIC 319.37). However, we did observe a pattern of increasing intercept values when examining “Year” 
as a random effect (S. Fig. 3), further indicating that mosquito species richness has annually increased across 
sites in CT since 2001.

Spatial regressions.  Similar to models of site-level mosquito abundance, GLMMs of species richness by coor-
dinate predicted positive relationships (Latitude (centered): Est. 0.63, t-value = 2.11; Longitude (centered): Est. 
1.26, t-value = 9.34), indicating the species richness tends to increase along a south to north, west to east gradi-
ent. The best fitting GAMM included Longitude by Latitude smoothing terms, which also predicted positive 
relationships between species richness and site coordinate (Smoothing term 1: Est. 1.45, p = 0.0001; Smoothing 
term 2: Est. 0.70, p = 0.05). The GAMM further predicted a complex relationship of species richness among sites, 
yet overall predicted richness was lowest in the southwest/central portions of CT (areas of greatest development) 
and highest along coastal/eastern portions of CT (areas of non-forested and forested wetlands) (S. Fig. 4). The 
fixed effect GLMMs provided very poor fits to the data compared with random effects-only models (Latitude: 
ΔAIC 953.01; Longitude: ΔAIC 871.93; see the above results for Site-level collections: spatial regressions for pos-
sible reasons for these poor fits).

Weather correlations.  We found no correlations of note between mosquito species richness and seasonal tem-
peratures and precipitation.

Land cover correlations.  Positive correlations of note for site-level species richness included: coniferous forest 
(r = 0.25, 0.04–0.43), deciduous forest (r = 0.56, 0.40–0.69), and forested wetland (r = 0.43, 0.23–0.58). Negative 
correlations included: barren (r = − 0.30, − 0.48 to − 0.10), developed (r = − 0.66, − 0.77 to − 0.53), grass (r = − 0.24, 
− 0.43 to − 0.03), and open water (r = − 0.31, − 0.49 to − 0.11).

Species evenness.  Temporal regressions.  Trends in species evenness were negative using both GLMMs 
(“Year”—Est. − 0.01, t-value − 7.86) and GAMMs (“Year (centered)”—Est. − 0.04, t-value − 5.58, p = 0.000) 
(Fig. 2D): this trend resulted in a predicted 12% decrease in site-level species evenness from 2001 to 2019. Simi-
lar to fixed effects GLMMs of species richness, fixed effects GLMMs of species evenness were less informative 
than a random effects-only model (ΔAIC 66.5). Declining intercept values were evident when evaluating “Year” 
as a random effect (S. Fig. 5), further supporting an overall annual decline in species evenness estimates among 
sites.

Spatial regressions.  Similar to spatial models of species richness, GLMMs predicted positive relationships 
between species evenness and coordinate (Latitude (centered): Est. 0.36, t-value = 7.63; Longitude (centered): 
Est. 0.18, t-value = 8.54); the best fitting GAMM, which included Longitude by Latitude smoothing terms, also 
predicted positive relationships (Smoothing term 1: Est. 0.12, p = 0.01; Smoothing term 2: Est. 0.16, p = 0.004). 
GAMM predictions of site-level species evenness were equally complex to predictions of abundance and rich-
ness, and predicted evenness to be highest in southcentral and eastern CT (S. Fig. 6). Fixed effect GLMMs pro-
vided very poor fits to the data compared with random effects-only models (Latitude: ΔAIC 502.6; Longitude: 
ΔAIC 488.4; see the above results for Site-level collections: spatial regressions for possible reasons for these poor 
fits).

Weather correlations.  We did find a negative correlation between statewide prior spring minimum tempera-
tures and mosquito species evenness (r = − 0.49, − 0.77 to − 0.04).

Land cover correlations.  Positive correlations of note for species evenness included: deciduous forest (r = 0.46, 
0.28–0.61) and forested wetland (r = 0.22, 0.01–0.41). Negative correlations included: barren (r = − 0.37, − 0.54 to 
− 0.18), developed (r = − 0.45, − 0.60 to − 0.26), and open water (r = − 0.32, − 0.50 to − 0.12).

Correlations between abundance, richness, and evenness.  The relationships between abundance, richness, 
and evenness varied depending on the scale examined. Across all years of data at the site-level, the correla-
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tion between abundance and richness was positive (r = 0.53, 0.36–0.67), the correlation between abundance and 
evenness as negative (r = − 0.35, − 0.52 to − 0.15), and there was no correlation of note between richness and 
evenness. Across all sites at the year-level, there were no correlations of note between abundance, richness, and 
evenness. Annual statewide correlations between richness and evenness (RRE) were positive for all years yet 
there was no noticeable annual trend in these correlations (Fig. 2E). Spatially, the average site-level RRE was 0.15 
(± 0.03 SE). Furthermore, the magnitude and direction of RRE tended to increase on a south to north gradient 
(r = 0.31, 0.11–0.49), yet there was no apparent relationship in RRE along a west to east gradient (S. Fig. 7). We 
did detect a positive correlation between RRE and average maximum spring temperatures (r = 0.46, 0.01–0.76) 
as well as a positive correlation between RRE and percent land cover classified as coniferous forest (r = 0.23, 
0.02–0.42).

Single detection events.  Single detection events were defined as the prevalence of single species detections at a 
site (i.e., number of species with a single pool divided by species richness). Changes in single species detections 
could indirectly indicate range expansion among species (i.e., the prevalence of single detections decreases with 
time) and/or areas of unique mosquito diversity (i.e., the prevalence of single detections changes across space).

Temporal regressions.  We detected no overall pattern of increasing/decreasing annual prevalence of single-
species detections among sites (GLMM, “Year”—Est. − 0.13, t-value = − 1.12, p = 0.22; GAMM, “Year”—Est. 0.02, 
t value = − 0.31, p = 0.75) (Fig. 2F). These models were considered equivalent to a random effects-only GLMM 
(ΔAIC < 2), and thus, there were no obvious temporal trend of increasing/decreasing frequency of single species 
detections among sites (S. Fig. 8). We did find a negative correlation between both collections and single-species 
detections among sites (r = − 0.81, − 0.92 to − 0.56), indicating that increases in collections are associated with 
increased species detections within the mosquito community.

Spatial regressions.  Unlike all previous models, GLMM and GAMM spatial regressions of single species detec-
tions by coordinate all provided poor fits to the data and indicated no obvious linear and nonlinear trends in 
single species detections in CT (Fig. 1B, S. Fig. 9).

Objective 2: annual collections of mosquito populations among species.  Our second objective 
was to identify species-level linear and nonlinear annual collection trends that would suggest growth or decline 
in mosquito community composition. Because data were aggregated across the state to the species-level in these 
analyses, we did not perform any spatial regressions with this data. All regression results and tables are provided 
as supporting information in Supporting Information: Regression Tables.

Total abundance.  Temporal regressions.  Annual trends in total abundance per mosquito species were posi-
tive (GLMM “Year” Est. 0.05, t-value 7.59; GAMM “Year” Est. 0.33, t-value 2.85, p = 0.0045), with a predicted 
doubling of per-species annual collections in CT from 2001 to 2019 (Fig. 3A). Fixed effects models of species-
level collections were less informative than random effects-only models (ΔAIC 11.2); however, there was a clear 

Figure 3.   Average annual mosquito abundance (A) and the prevalence of single site detections (B) across 46 
commonly captured mosquito species in Connecticut, U.S. All individuals were collected across 87 sites sampled 
with ground-level CDC CO2-baited light traps from 2001 to 2019. Points represent the average across all species, 
solid lines represent the standard error of the average, and dashed lines are added to aid interpreting each plot as 
a time series. The figure was created in R V 3.6.3 using base functions.
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pattern of increasing “Year” random intercept estimates in the null model (S. Fig. 10), further supporting an 
increase in abundance across species.

Single detection events.  Among species, our regressions identified a linear (GLMM, “Year”—Est. − 0.03, 
t-value = − 8.47) and non-linear (GAMM, “Year”—Est. − 0.02, t-value = − 3.35, p = 0.0009) decline in single-site 
detections (Fig. 3B). In these models of single-site detections among species, fixed effects models provided a 
poor overall fit to the data compared to random effects-only models (ΔAIC 145.6). There was also a strong tem-
poral pattern of decline in the intercept estimates for “Year” when “Year” was evaluated as a random effect (S. 
Fig. 11), further suggesting a pattern of spatial growth (i.e., a decline in single-site detections) among mosquito 
species in CT.

We did find a negative correlation between species-level collections and the proportion of single site detec-
tions among species (r = − 0.81, − 0.92 to − 0.56), indicating that increases in collections are associated with 
increased spatial detections (i.e., declines in single species detections).

Species‑specific trends.  Since 2005, five additional species have been documented in CT (Table 1), including 
Aedes atlanticus (Dyar and Knab), Aedes flavescens (Muller), Aedes infirmatis (Dyar and Knab), Aedes spencerii 
(Theobold), and Psorophora howardii (Coquillett). Initial detections of each species were along the southern 
border of CT (Fig. 4). We further identified nine species possibly undergoing population increases in CT: Ae. 
albopictus, Aedes taeniorhynchus (Wiedemann), Anopheles crucians (Wiedemann), Anopheles quadrimaculatus 
(Say), Anopheles walkeri (Theobald), Cx. erraticus, Culex territans (Walker), Psorophora columbiae (Dyar and 
Knab), and Ps. howardii (Table 1, Fig. 4). Many of these novel and expanding species tended to display a more 
southern distribution (Fig. 4), suggesting that many of the species possibly experiencing population expansions 
are moving from south to north. We found further evidence of a south to north expansion of species populations 
when examining correlations between total site-level species richness and latitude (r = − 0.29, − 0.47 to − 0.08).

We also detected two possibly declining species, Aedes trivittatus (Coquillett) and Aedes sticticus (Meigen) 
(Table 1, Fig. 4). Outside of the species listed in Table 1, eight species displayed statistical evidence of growth 
in either total annual collection or total spatial detections while eight species displayed statistical evidence of 
declines in collections or detections (see Supporting Information: Regression Tables). Due to the lack of evidence 
of growth/decline in both collections and detections for these 16 species, we did not make any conclusions as to 
whether these species were actually increasing or decreasing in the state.

Table 1.   New, emerging, and declining mosquito species in Connecticut, U.S. 2001–2019. New species include 
individuals collected through any mosquito surveillance method (standard or exploratory) and site (standard 
and supplemental) employed by the Connecticut Agricultural Experiment Station’s mosquito and arbovirus 
surveillance network. Expanding and Declining species are determined using linear regressions of collections 
and detections using only data from CO2-baited CDC light traps at 87 standardized sites in CT sampled 
from 2001 to 2019. *Denotes confirmed isolates from CT mosquito surveillance network: CVV Cache Valley 
virus, EEEV eastern equine encephalitis virus, HJV Highlands J virus, JCV Jamestown Canyon virus, PTV 
Potosi virus, TVT Trivittatus virus, WNV West Nile virus. + For virus isolation studies, please see29,54–56. ++ For 
mosquito host preference studies, please see7,26,57.

Designation Species 1st State Record Peak year Total Total towns
Evidence of growth/
decline Virus detection+ Host preference++

New species since 2005

Aedes atlanticus 2014 2018 42 15 – – Mammalian

Aedes flavescens 2014 – 1 1 – – Mammalian

Aedes infirmatus 2012 2018 30 9 – – Mammalian

Aedes spencerii 2011 – 1 1 – – Mammalian

Psorophora howardii 2005 2018 142 26 Growth – Mammalian

Expanding Species 
(defined as increases 
in collections and 
detections)

Aedes albopictus 2003 2018 10,398 31 Growth CVV*, PTV*, WNV* Mammalian

Aedes taeniorhnychus Native to region 2011 150,134 38 Growth CVV*, JCV*, PTV*, 
WNV* Mammalian

Anopheles crucians Native to region 2019 2,234 51 Growth CVV*, JCV*, 
EEEV*, WNV* Mammalian

Anopheles quadri-
maculatus Native to region 2015 1,122 63 Growth CVV*, EEEV*, HJV*, 

JCV*, PTV*, WNV* Mammalian

Anopheles walkeri Native to region 2014 7,180 52 Growth CVV*, EEEV*, JCV*, 
PTV*, WNV* Mammalian

Culex erraticus 1999 2019 1,178 39 Growth – Avian, reptilian

Culex territans Native to region 2017 2,790 71 Growth WNV* Avian, reptilian

Psorophora columbiae 2003 2018 96 18 Growth – Mammalian

Declining Species 
(defined as declines in 
collections and detec-
tions)

Aedes trivittatus Native to region 2011 204,120 74 Decline
CVV*, EEEV*, HJV*, 
JCV*, PTV*, TVT*, 
WNV*

Mammalian

Aedes sticticus Native to region 2003 18,590 73 Decline EEEV*, JCV*, PTV*, 
TVT*, WNV* Mammalian
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Discussion
We used multiple statistical approaches to quantify changes in mosquito community composition in Connecticut, 
U.S. since 2001. Overall, in 19 years of surveillance total mosquito collections have grown annually and five spe-
cies, including Ae. atlanticus, Ae. flavescens, Ae. infirmatus, Ae. spencerii and Ps. howardii, were identified for the 
first time since 2005, representing a 10.2% increase in mosquito species richness. In addition to these five novel 
species, collections of eight other species likely grew throughout CT, including Ae. albopictus, Ae. taeniorhynchus, 
An. crucians, An. quadrimaculatus, An. walkeri, Cx. erraticus, Cx. territans, and Ps. columbiae. All novel/expand-
ing species are capable of generating multiple generations in a year, eleven utilize mammalian species as blood 
meal sources, and seven displayed a pattern of northward expansion. We identified a spatial trend of mosquito 
species richness with total mosquito species richness being highest in the southern portion of CT while mosquito 
species evenness was highest in the northern/eastern portion of CT (Table 2). In summary, several mosquito 
species are experiencing range shifts, northward expansions, and population growth in the northeast region of 
the U.S. which may have potentially important impacts on arbovirus transmission in the region29.

We found multiple forms of statistical evidence that indicate an expansion of mosquito species populations 
in CT in the previous two decades. This expansion has occurred in conjunction with a trend of warming tem-
peratures; however, we found no correlations between annual collections/species richness and summer/spring/
winter temperatures. This expansion has also occurred in conjunction with a general annual drying trend, despite 
detecting a positive correlation between summer precipitation and total mosquito collections. This correlation 
likely reflects the general dependence of multiple mosquito species on aquatic habitats, and the capacity of 
populations to grow rapidly in response to extreme precipitation events31–33. Importantly, our analyses of climatic 
variables and mosquito community composition focused on state-level comparisons predominately due to a 
lack of available site-specific climatological data. Mosquitoes are acutely sensitive to temperature, humidity, and 
precipitation at very fine spatial scales, and as such, our analyses ignored such fine-scale variation in climate. 
Additionally, throughout our analyses our random effects-only GLMMs outperformed fixed effect GLMMs, 
clearly suggesting that both site- and year-specific factors explain a large amount of variance in our mosquito 
community composition analyses. Other factors unexamined in this report, such as variability of extreme weather 
events, site-specific microclimate, and the interactions between these and other factors, could be influencing 
patterns of mosquito community collections across the state.

Our correlations of mosquito collections and land cover support previous short-term research on mosquito 
communities13–18: after accounting for surveillance effort, richness and evenness were highest in sites with a 
greater prevalence of forested land cover and lowest in sites with a greater prevalence of land cover associated 
with human developments. This trend in richness was further evident in our GLMMs of collections by latitudinal 

Figure 4.   The latitudinal distribution of forty-six mosquito species collected in light traps across 87 surveillance 
locations in Connecticut, U.S. sampled with ground-level CO2-baited light traps from 2001 to 2019. Species are 
ordered by their average location of detection across all light trap collections in the CAES database. Fill colors 
represent the time period of first detection during standardized surveillance; border colors indicate statistical 
evidence of growth or decline in collections throughout CT; NS not significant. Species listed in Table 1 which 
are not listed here include Aedes flavescens and Aedes spencerii as there are only one collection of each species 
across all trapping effort. The figure was created in R V 3.6.3 using the ggplot2 package.
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coordinate (which also reflect the dominant land cover gradient of urban to forested in CT). Across all trapping 
data, total richness was highest along the southern boundary of CT while evenness tended to increase with 
latitude as well as longitude. The overall greater species richness in southern CT supports the view that many 
mosquito species are expanding northward, possibly in response to climate change20,28,34. The spatial pattern of 
total species evenness also likely reflects patterns of land cover which becomes increasingly forested moving 
from southwest to northeast in CT. Despite these coarse-level correlations, it is important to note that land 
cover changes likely play only a marginal role in mosquito community growth as land cover has changed little 
in CT since 1985 (https​://clear​.uconn​.edu/index​.htm; between 1985 and 2015, there has been an average of 3.5% 
increase in developed, 1.5% increase in turf/grass, 3.8% decrease in forested, and − 1.4% decrease in agricultural 
land cover types across CT). Further research pertaining to local dynamics of mosquitoes, weather patterns, 
and inter and intraspecific interactions are needed to better distinguish the influence of climate, predation, and 
competition on the expansion of mosquito populations in CT.

One unique aspect of our analyses was our investigation of the relationship between mosquito species rich-
ness and evenness (i.e., RRE). There is debate in the ecological literature as to whether variability in richness 
and evenness is driven by (in)dependent mechanisms35, and distinguishing the relationship between richness 
and evenness can have important implications for biodiversity research and conservation. Spatial and temporal 
patterns of richness and evenness were opposite, which suggests there should be no significant relationship, i.e. 
RRE ~ 0, between the two metrics35; however, we did detect a latitudinal trend of increasing RRE (both in terms 
of magnitude and direction). This could be an effect of the dominant gradient between urban-forested habitats in 
CT and the associated patterns detected between land cover and community composition metrics, with forested 
environments more prevalent in the eastern and northern portion of CT. Importantly, each metric measures a 
different aspect of community assembly, yet in the context of mosquito-borne pathogens, species richness is most 
often examined in relation to patterns of pathogen prevalence/incidence17,18,29,36. Further research is needed to 
determine the utility of measuring species evenness in relation to pathogen transmission.

In terms of our species-level analyses, we found inconsistent patterns of growth across all species in CT. The 
lack of a common trend among all species was not unexpected, as species display different life history traits and 
share unique relationships with habitat and climate, and thus are unlikely to respond uniformly to changes in 
either factor. We did, however, detect multiple indicators that mosquito species populations are mostly expand-
ing in CT. First, we detected a decrease in single-site detections across species. We also documented expanding 
detections of multiple novel, range expansion, and invasive species along a south to north latitudinal gradient 
while not detecting any north to south movement of species. Our analyses of species-specific patterns of growth 
further identified commonalities among species experiencing expansions in CT, including multiple generations 
per year and a larval habitat preference for temporary (temporary flooded ground pools or containers) and (semi)
permanent high-water habitats (swamps and bogs); most expanding species also display mammalian host blood 
feeding preferences37,38. Opportunistic traits have been previously identified as a signature of successful invasive 
or range expansion mosquito species39, and our surveillance results extend this result beyond the invasive con-
tainer breeders such as Ae. japonicus and Ae. albopictus to include such species as Ae. atlanticus, Ps. columbiae, 
and Ps. howardii. The invasion dynamics of Ae. japonicus and Ae. albopictus and their ability to vector arboviruses 
have been widely discussed, and these species are currently established in CT28,40,41.

The growth in collections of common species such as Ae. taeniorhynchus, An. crucians, An. quadrimaculatus, 
An. walkeri, Cx. erraticus, and Cx. territans that are common in (semi)permanent water-body habitats may be 
consistent with a trend of restoration of historical wetland habitats in the northeast region of the U.S.42. Culex 
erraticus has been implicated as an enzootic vector of EEEV43,44, though it remains to be seen if Cx. erraticus 
will (or has) contributed to transmission of any arbovirus in CT29; Anopheles quadrimaculatus was also the 
historical primary vector of malaria transmission in the U.S. Growth in Ae. taeniorhynchus collections and the 
establishment of Ps. columbiae, two nuisance species known to aggressively bite humans, could impact the public’s 

Table 2.   Summary results from site-level analyses of annual collections, mosquito species richness, and 
mosquito species evenness by time, climate, land cover, and spatial location.

Site-level variable Year (GLMMs) Climate variables (correlation) Land cover (correlation) Spatial orientation (GAMMs)

Annual abundance Increasing

Temperature
None

Positive: barren, forested wetland, non-
forested wetland

Latitude: positive, increasing from south 
to north

Precipitation
Summer: positive Negative: grass Longitude: positive, increasing from west 

to east

Annual species richness Increasing

Temperature
None

Positive: forested sites (coniferous, 
deciduous, wetland)

Latitude: positive, increasing from south 
to north

Precipitation
None

Negative: barren, developed, grass, open 
water

Longitude: positive, increasing from west 
to east

Annual species evenness Decreasing

Temperature
Spring minimum: negative Positive: deciduous and forested wetlands Latitude: positive, increasing from south 

to north

Precipitation
None Negative: barren, developed, open water Longitude: positive, increasing from west 

to east

Annual richness/evenness correlation No trend

Temperature
Spring maximum: positive Positive: coniferous forest Latitude (correlation): positive, increasing 

from south to north

Precipitation
None Negative: None Longitude (correlation): none

https://clear.uconn.edu/index.htm
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enjoyment of certain environments such as human developments near salt-water marshes (Ae. taeniorhynchus) 
and golf courses (Ps. columbiae). While our regressions of these species’ annual collections indicate possible 
population growth, further research is needed on each species to better define the likelihood of these results. 
We also further caution over-interpreting possible expansions of arboviral transmission with the expansion of 
the species identified in Table 1 as none of these listed species are the likely primary vectors of any arbovirus 
currently under surveillance in CT29.

We did document a possible decline for Aedes sticticus and Aedes trivittatus. Aedes sticticus is a river floodplain 
species that relies on flooding alongside rivers and streams to provide larval habitat. Possible habitat factors 
affecting the population of Ae. sticticus include channelization of streams due to urbanization and the legacy of 
waterway damming in the northeast; whether the statewide effort to rehabilitate river floodplains and remove 
unnecessary and defunct dams in CT could result in a rebound of Ae. sticticus is uncertain45. Aedes trivittatus 
is often associated with temporarily flooded ground level depressions and is considered a localized nuisance 
species in a number of habitats throughout the northeast. This species’ decline could be linked to the overall 
decline in summer precipitation observed in CT; however, other aggressive human-biting species that display a 
similar life history strategy, such as Aedes vexans (Meigen) and Psorophora ferox (Humbolt), showed no trends 
of note. While no one likely laments the decline of a mosquito species, future studies on Ae. sticticus and Ae. 
trivittatus could elucidate ecological mechanisms of decline that could be incorporated into integrated mosquito 
management practices.

Conclusion
Mosquitoes are an important grouping of insect species that, due to their ability to vector pathogens among 
humans and between humans and wildlife, require constant surveillance. The resulting datasets produced from 
these efforts provide long-term data to test the generalizability of insect declines that have been observed in other 
taxa. We have shown that in the northeast region of the U.S., overall mosquito abundance has increased annually 
and there have been multiple introductions of native and invasive species into the region in the previous 20 years. 
We also identified commonalities among species experiencing growth and expansion in the region: opportunistic 
egg-laying behaviors, a reliance on (semi)permanent bodies of water, and a preference for mammals as blood 
meal hosts. Overall, we detected a south-to-north trend of increasing community richness, indicating that many 
species are moving northward, possibly in response to changes in land use and climate. How these changes in 
mosquito community composition will impact mosquito-borne pathogen transmission in the future will require 
further eco-epidemiological investigations.

Methods
Mosquito surveillance in Connecticut.  The Connecticut Mosquito Trapping and Arbovirus Surveil-
lance Program has been operational since 1997. Initially, 37 trapping locations were selected for eastern equine 
encephalitis virus (EEEV) surveillance. In 2000 and 2001, the program was expanded to 73 and 91 locations 
respectively, due to increased mosquito trapping and arbovirus surveillance for WNV. Ninety-one sites were 
standardized in 2004 with an additional trapping site added in 2016 (Fig. 5); supplemental trapping locations 
have been added on a seasonal basis to evaluate elevated risk of transmission of WNV or EEEV to the public 
as appropriate. Beginning in 2012, Biogents BG Sentinel traps, baited with the Human Scent Lure, have been 
utilized for increased surveillance of Ae. albopictus, primarily at locations where this invasive species has been 
detected from 2012 to 2019. Each surveillance season traditionally begins the first week of June and continues 
through the end of October. Throughout each season, mosquitoes are collected at each site using a single CDC 
light trap baited with CO2 (as dry ice) and a single gravid trap baited with a hay-lactalbumin infusion. Traps are 
set late morning or early afternoon and collected early in the morning the following day. Surveillance is con-
ducted at each site approximately once every 10 days; if there are isolations of WNV or EEEV, trapping is then 
conducted once or twice a week at those sites for the remainder of the surveillance season. All collections are 
tested for arboviral infections using cell culture and RT-PCR with a suite of arbovirus primers46.

Trend analyses.  We limited our trend analyses to trap sites that have remained in continuous operation 
between 2001 and 2019 (n = 87 sites). We then further limited our analyses to collections from ground-level 
CO2-baited light traps only; this is because light traps are the least biased collection device used by the network6. 
Because the intent of this manuscript was to investigate changes in mosquito community composition, we did 
not examine trends in arboviral detections as have been previously reported29.

Objective 1: annual collections of mosquito populations among sites.  The first objective of our 
study was to identify temporal and spatial trends in annual collections of mosquito populations among sites. 
We examined linear and nonlinear (i.e., smoothing) trends in total annual collections, species richness, species 
evenness, and the prevalence of single-species detections using generalized linear/additive mixed effects models 
(GLMMs and GAMMs, respectively).

For spatial and temporal models of total collections, the response term was the log-transformed total annual 
collection per site, trapping effort (defined as the number of trap nights at each individual site per year) was an 
intercept-offset term (GLMMs) or a fixed effect term (GAMMs), year/latitude/longitude were individual fixed 
linear (GLMMs) or smoothing (GAMMs) terms, and either trap site (temporal regressions) or year (spatial 
regressions) were random intercept effect term; we also explored interactions between spatial coordinates in 
the GAMMs. A natural log transformation was used to investigate trends in collections among sites due to the 
large variance in total collections observed among these terms and to improve model convergence. In the spatial 
regressions, latitude and longitude were centered to their average value in the data set in order to improve model 
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convergence. We chose to model sites and years as random effects to account for inherent similarities of repeated 
measures as well as to better evaluate variation among these variables47.

For models of species richness and evenness, richness and evenness were first calculated using the specnumber 
and diversity functions available in the R package “vegan”48. In all GLMMs/GAMMs of richness/evenness, rich-
ness/evenness and year/coordinate were centered to the average values in order to improve model convergence. 
For models of the annual proportion of single species detections among sites, changes to the above methodology 
included modeling the response term as a binomial-error distributed proportion and centering Year or coordi-
nate. These models essentially examined patterns in the detection of “singletons”, a term which describes “rare” 
species detections and has been used in the conservation literature to identify areas with an overabundance of 
rare species (which may in turn identify areas with unique ecologies for conservation). In this report, our aim 
was to identify whether single detections events increased or decreased with time (which may provide additional 
evidence of community changes) rather than to identify regions of unique mosquito species diversity. Because 
CAES records and tests collected mosquitoes for arboviruses as pooled samples, we defined singletons as the 
sole pool of a particular species identified at a site in a single year.

We examined coarse-scale correlations in state-wide annual collections and seasonal weather variables as well 
as site-wide total collections and land cover classifications using the Pearson’s correlation coefficient; all state-wide 
and site-wide metrics were corrected for trapping effort in these analyses. Weather comparisons included within 
season comparisons of minimum, average, and maximum seasonal temperature and total precipitation (data 
aggregated from May to October) as well as comparisons between prior Winter (December of prior year–Feb-
ruary) and prior Spring (March–May) and total seasonal collections. Daily weather data in Connecticut from 
2001 to 2019 were obtained from the National Oceanic and Atmospheric Administration’s Climate Date Online 
platform (n = 42 stations). Land cover data was obtained from UCONN CLEAR (https​://www.clear​.uconn​.edu) 
as reported previously29. Briefly, a 0.51 km buffer was drawn around the geolocation of each trap site in ArcMap 
10.5.1, land cover attributes were clipped to this buffer, and the percentage of each land cover classification 
was calculated. Because land cover has changed very little in CT since 1985 (https​://www.clear​.uconn​.edu), 
we performed correlations between percentage land cover derived from the 2015 land cover data and the total 
collection at each trap across all years corrected for total trapping effort across all years . Finally, we examined 
the correlation between richness and evenness among sites and across the state using the Pearson correlation 
coefficient (termed RRE in community ecology analyses35).

We used the glmer and lmer function in the “lme4” R package for all GLMMs49 and the gamm function in the 
“nlme” R package for all GAMMs50. To facilitate model comparisons between GLMM random effect models and 
fixed effect models, maximum likelihood estimation was employed in all GLMMs (i.e., coding REML = FALSE). 

Figure 5.   Timeline of The Connecticut Agricultural Experiment Station’s (CAES) mosquito and arbovirus 
surveillance network, 1996–2019. The top portion of the timeline identifies significant events in the 
development of the network with special mention of published reports of mosquito communities in the state. 
The bottom portion identifies year of first detection for 11 invasive and range expansion mosquito species 
detected through the surveillance network. The figure was created in Microsoft PowerPoint 2016 with images 
created by CAES.

https://www.clear.uconn.edu
https://www.clear.uconn.edu
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Model predictions, random effects, and residuals were assessed using the ggpredict, plot_model, and qqnorm() 
functions available in the “ggeffects” R package, “sjPlot” R package, and base R, respectively51,52. All models 
described above were compared to random effect-only models using the Akaike Information Criteria (AIC). 
Correlations were performed using cor.test(), which is available in base R53.

Objective 2: annual collections of mosquito populations among species.  We repeated only the 
temporal regressions listed above for our analyses of species-level collections. In regressions of collections by year 
among species, the response term was the log (+ 1)-transformed total annual collection per species, annual trap-
ping effort was an intercept-offset term (GLMMs) or a fixed term (GAMMs), year was a fixed linear (GLMMs) or 
smoothing (GAMMs) term, and species was a random intercept effect term. A natural log (+ 1) transformation 
was used to investigate trends in collections among species due to the large variance in total collections observed 
among these terms and to improve model convergence; the (+ 1) was included because some species were not 
collected in all years. Similar to models described above for single species detections among sites, we examined 
the annual proportion of single site detections among species using GLMMs and GAMMs. However, both the 
response term (single-site detection) and predictor term (year) were centered to improve model convergence.

We completed our among species analyses by identifying species-specific trends that may signify possible 
population growth or decline in a species since the 2005 publication of the identification guide of mosquitoes 
in the state of CT26. First, we utilized all data available from all trap types within the CAES dataset to identify all 
novel species detections. We then analyzed either total annual collections (log transformed) or number of sites 
detected for each species with a simple linear regression with year as the predictor variable and annual trapping 
effort as an intercept offset; a Poisson-error generalized linear regression was implemented for regressions of 
number of sites detected. Evidence for growth in collections and spatial detections were used to identify which 
species’ populations likely expanded in the state in the previous 20 years; likewise, evidence for declines in col-
lections and spatial detections were used to identify which species’ populations are likely declining in the state.

Data availability
All data necessary to reproduce these results are included as Supporting Information.
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